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Abstract
Dispersal is an important, yet overlooked phenomenon when studying species’ distributions using ecological
niche models (ENMs). Here, we use species’ dispersal limits to evaluate and refine ENM estimates only to the
areas accessible to the species within the study region and, thereby, enhance the model interpretations. First,
we ran multiple ENMs to estimate the distribution of sea krait species in both marine and terrestrial
environments. Second, we estimated dispersal of the sea kraits using a cost analysis approach. Finally, we
outline a new approach that combines dispersal models and ENMs with the purpose of estimating the
accessible range when projecting species’ distribution estimates outside the known species range. We found
that only a small proportion of the area the ENMs were projected over was accessible to sea kraits. The
majority of the suitable areas for sea kraits are within the accessible area. Outside the accessible area, there is
only a very limited suitable area for sea kraits. Our results suggest that when dispersal is taken into account,
sea kraits seem to occupy most of their suitable available niche and that they may be unable to colonize much
of the area outside of their dispersal ranges. Using dispersal estimates to refine species’ distribution pre-
dictions is a useful tool for refining the area of focus when ENM results are interpreted. Estimating species’
dispersal also helps evaluate the ability of the models to predict the species’ distributions in areas that are not
accessible to the species and, hence, the potential commission error represented by overprediction.
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I Introduction

In recent years, best practices for identifying fac-

tors that determine species’ distributions have

been proposed and debated in the field of biogeo-

graphy (Peterson et al., 2011). Techniques that

use species’ occurrences and environmental data
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to estimate the potential distributions of the stud-

ied organism have become very popular in cur-

rent biogeographical research and are generally

known as ecological niche modeling (ENM) or

species’ distribution modeling (Franklin, 2009;

Peterson and Soberon, 2012; Peterson et al.,

2011). Applications of ENM are wide and

include geographic ecology (Peterson et al.,

2011; Vidal-Garcia and Serio-Silva, 2011), inva-

sive species (Peterson et al., 2003; Vaclavik and

Meentemeyer, 2012), effects of climate change

on species’ distributions (Roberts and Hamann,

2012; Sahlean et al., 2014; Saupe et al., 2011),

conservation (Jackson and Robertson, 2011;

Mesquita et al., 2013; Sarkar et al., 2009), evolu-

tion (Nyári and Reddy, 2013; Psonis et al., 2018;

Wiens and Graham, 2005), and predicting the

presence of pathogens (Flory et al., 2012; Muel-

ler et al., 2013; Peterson et al., 2007). Clearly,

these methods contribute to our fundamental

understanding of ecological phenomena, and

improving these methodologies is essential.

However, ENM results are prone to potential

errors of interpretation due to incomplete data

or lack of knowledge of the studied species’

dispersal ability. A recent study (Sahlean

et al., 2014) showed that areas projected to be

suitable under climate change scenarios are

largely inaccessible to the species due to limited

dispersal abilities and landscape factors not

integrated into ENM. Hence, the distributional

estimates obtained have to be analyzed from the

perspective of the dispersal ability of the studied

organism in order to create predictions that are

more accurate.

Some solutions for addressing this issue are:

(a) using expert opinion or published data to

restrict the model training and projecting region

only to the areas accessible to the species; or (b)

estimating the species’ potential dispersal

across the study area using statistical methods

(Barve et al., 2011; Peterson et al., 2011). In

landscape ecology, species’ dispersal among

habitat patches is estimated using statistical

tools (LaRue and Nielsen, 2008; Richard and

Armstrong, 2010; for some examples, see Fuller

et al., 2006). One of the most common

approaches for estimating species’ dispersal is

graph theory (Urban and Keitt, 2001). Graph

theory treats the study area as a graph surface

with nodes (e.g. occurrence data) connected via

dispersal routes (for an in-depth explanation,

see Urban and Keitt, 2001). Cost distance func-

tion is a graph-based tool (Sawyer et al., 2011;

Urban et al., 2009) that assumes the effort to

disperse across a landscape is directly propor-

tional with distance; hence, it reflects the notion

of distance effect on species’ immigration

(Brown and Kodric-Brown, 1977). Moreover,

Cooper and Soberon (2018) were able to obtain

more accurate ecological niche models (ENMs)

using different accessible area scenarios. For

this reason, using dispersal in ENM is neces-

sary. Further, using cost distance to limit the

ENM estimates only to the areas accessible to

the species within the study region can provide

more realistic species’ distribution predictions

and enhance the model interpretations.

Here, we used cost distance models to eval-

uate species’ dispersal ability and refine the

ENM potential distribution estimates to areas

of the region that are most likely to be accessible

to the species of interest. Specifically, we used

the potential distributions of six sea krait species

and relevant seascape features (i.e. characteris-

tics of an area of the ocean) to estimate the

potential dispersal of the sea kraits across their

range. We discuss whether this approach

improves ENM estimates and address the lim-

itations of this technique in the context of ENM.

II Material and methods

1 Study organisms and region

Sea kraits (Laticauda spp.) are a group of

amphibious marine snakes found in the tropical

and subtropical waters of Southeast Asia and in

the western Pacific Ocean (Elfes et al., 2013;

Gherghel et al., 2016; Heatwole et al., 2005).

Sea kraits are rear-fanged (proteroglyphous)
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snakes that belong to the family Elapidae (Pyron

et al., 2011). The genus Laticauda comprises

eight species that belong to three main groups:

Laticauda colubrina (L. colubrina, L. frontalis,

L. guineai, and L. saintgironsi); Laticauda lati-

caudata (L. laticaudata and L. crockery); and

Laticauda semifasciata (L. semifasciata and

L. schistorhyncha) (Greer, 1997; Heatwole,

1999). Due to limited species presence informa-

tion, L. guineai, L. crockery, and L. schistor-

hyncha were not included in the analysis.

Typically, sea kraits forage at sea once every

two weeks on benthic anguilliform fish, and

spend the remaining time on land to digest,

rest, mate, and lay eggs (Bonnet et al., 2005;

Brischoux et al., 2007; Brischoux et al., 2011;

Heatwole et al., 2016; Lillywhite et al., 2008;

Reed et al., 2002; Shetty and Shine, 2002a;

Shetty and Shine, 2002b).

The extent of our study region encompassed

the western Pacific Ocean and the eastern Indian

Ocean, corresponding to the known distribution

of sea kraits (Elfes et al., 2013; Heatwole et al.,

2005). The study region is heterogeneous, with

numerous archipelagoes (including Indonesia,

the Philippines, and Vanuatu) and coral reefs

of different sizes (the northern side of the Great

Barrier Reef, as well as along the coasts of

archipelagoes), which provide potential habitats

for sea kraits (Heatwole et al., 2005).

2 Potential distributions of sea kraits

Multiple factors influence sea krait distribu-

tions: precipitation; ocean and land surface tem-

peratures; salinity; the presence/absence of

coral reefs and mangrove forests; the distance

from shoreline; and water depth (Brischoux

et al., 2009; Brischoux et al., 2012; Brischoux

et al., 2013; Heatwole, 1999; Heatwole et al.,

2005; Heatwole et al., 2012; Heatwole et al.,

2017; Park et al., 2017). The potential distribu-

tions of sea kraits were estimated for both

marine and terrestrial (shoreline) environments

using maximum entropy algorithm Maxent

3.3.3k (Phillips et al., 2004), sea krait species’

occurrences, and environmental characteristics

known to influence sea krait distributions (for

details, see Gherghel et al., 2018). Prey avail-

ability data were included as the predictor vari-

able for marine domain (Gherghel et al., 2018).

Model performance and accuracy were assessed

using two threshold-independent indices (Area

Under the Curve (AUC) and the partial AUC)

and one threshold-dependent index (omission

error at the lowest 10 percentile threshold)

(Franklin, 2009; Jimenez-Valverde, 2014;

Peterson and Soberon, 2012; Phillips et al.,

2004). All models were transformed from con-

tinuous suitability values to binary suitable-

unsuitable based on the lowest 10 percentile

threshold (Jimenez-Valverde, 2014). All our

models performed very well under all perfor-

mance metrics (Table 1). For our study, we clas-

sified the potential distribution of each sea krait

into four categories: not suitable, suitable only

in the terrestrial domain, suitable only in the

marine domain, and suitable in both domains

using the models previously published by Gher-

ghel et al. (2018). These potential distribution

maps were used in dispersal models (see next

section on dispersal models) to estimate how

much of the suitable area is accessible to sea

kraits and to restrict the distribution maps only

to these regions.

3 Dispersal models

To estimate the dispersal of sea kraits across the

study region, we used the cost distance analysis

tool from ArcGIS 10.2. This tool calculates the

resistance to dispersal from a known sea krait

occurrence to the edge of the study region based

on a cost raster (ESRI, 2011). We generated a

cost raster that included three seascape features

known to influence the dispersal of sea kraits:

distance from the shoreline, water depth, and

presence or absence of coral reefs and mangrove

forests. The seasonal changes in the direction of

sea currents as well as paleogeography changes
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of the area have had an impact on the distribu-

tion of sea krait species (Heatwole et al., 2017).

However, because of the dynamic nature of

these changes, we did not include them in the

current analysis due to limited available data.

We categorized the three variables for species’

dispersal ability using expert opinion (authors

FB and IG) (Appendix 1), based on previously

published data (Brischoux et al., 2009;

Brischoux et al., 2013; Heatwole, 1999; Heat-

wole et al., 2005; Heatwole et al., 2012), and

averaged the weighted variables in the final cost

surface. The weighting was done on a scale

from 0 to 100, on which 100 was given to seas-

cape features known to inhibit sea krait mobility

(e.g. sea kraits cannot feed on the seafloor

deeper than 100 m below sea level), and 0 to

seascape features known to be preferred by the

sea kraits (e.g. coral reefs). The final cost raster

represented the average ranking of the three

weighted variables (Appendix 1). This cost ras-

ter and the occurrence points for each species

were used as factors in the cost distance analysis

in ArcGIS 10.2 (ESRI, 2011). We obtained a

continuous raster (hereafter referred to as a dis-

persal raster) with smaller values representing

high dispersal potential and larger values repre-

senting low dispersal potential (ESRI, 2011). To

simplify the interpretation of the dispersal ras-

ter, we converted it to a binary form (dispersal

and no dispersal) using the smallest value of the

raster that comprised all species’ occurrence

points as the threshold for defining dispersal.

In context of species’ potential distributions

estimated with ENM, the accessible area will

define the range of the potential distribution to

which species can disperse and occupy. The

proportion of pixels (raster cells) from each suit-

ability category (not suitable, suitable only in

the terrestrial domain, suitable only in the

marine domain, and suitable in both domains)

within and outside of the accessible area was

calculated for each sea krait in SAS JMP 10.

III Results

Of the total study region, we found that the pro-

portion of area estimated by our dispersal mod-

els to be accessible to sea kraits was very small

(Figure 1). For widespread sea krait species

(L. colubrina, L. laticaudata, and L. semifas-

ciata), the accessible areas were generally

Table 1. Performance and accuracy of the ecological niche models.

Domain Species AUC Omission error

Partial AUC

x�a sx
b ac

Marine L. colubrina 0.97 0.10 1.94 0.01 s
L. frontalis 0.99 0.17 – – –
L. laticaudata 0.98 0.18 1.95 0.01 s
L. saintgironsi 0.99 0 2.00 0.00 s
L. semifasciata 0.99 0.14 2.00 0.00 s

Terrestrial L. colubrina 0.87 0.13 1.33 0.08 s
L. frontalis 0.99 0.14 – – –
L. laticaudata 0.86 0.29 1.20 0.20 ns
L. saintgironsi 0.99 0.17 1.99 0.00 s
L. semifasciata 0.87 0.13 1.55 0.18 s

amean partial AUC ratios.
bstandard deviation of partial AUC ratios.
cstatistical significance level of 0.05.
AUC: Area Under the Curve; s: significant; ns: not significant.
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between 10% and 22% of the study region (Fig-

ure 1). However, endemic species with a narrow

distribution range (L. frontalis and L. saintgir-

onsi) could potentially access only 0.22% and

0.16%, respectively, of the study area (Figure 1).

By analyzing the suitability of the study

region within and outside of the accessible area,

we found that outside of the accessible area

most of the pixels (>99%) were predicted as

being unsuitable, whereas a very small propor-

tion of pixels were in either category of suitabil-

ity (terrestrial or marine, see Figure 2). All

species showed the same trend, regardless of the

extent of their accessible area within the study

region (Figure 2). Regions outside of the acces-

sible area that were suitable in both marine and

terrestrial domains counted for less than 0.8% of

the total number of pixels among all species

(Figure 2). Moreover, in the case of L. frontalis

and L. saintgironsi, less than 0.0001% of the

region outside of their accessible area was pre-

dicted by the models as being suitable in both

marine and terrestrial domains.

The region within the accessible area was

found to be mostly unsuitable (70%–95% unsui-

table) (Figure 3). On average, 4% of the pixels

were suitable in both environments (marine and

terrestrial); species with the least proportion of

pixels accessible in both environments were

L. laticaudata (0.45%) and L. semifasciata

(0.6%) (Figure 3). This result suggests that,

despite the two species’ wide potential distribu-

tions, the areas that are actually accessible to

them are very small. Laticauda colubrina is the

only widely distributed sea krait species that had

more than 1% of suitable pixels in both marine

and terrestrial environments within its accessi-

ble area (Figure 3). The species with the highest

proportion of suitable areas within the accessi-

ble area were the endemic species: L. frontalis

(2.8%); and L. saintgironsi (4.2%) (Figure 3).

Overall, most of the areas suitable for sea

kraits were within the accessible area (Figure 4).

Therefore, even though the overall proportion

of suitable pixels within each species’ accessi-

ble area was relatively small, the majority of

suitable pixels for each species occurred within

Figure 1. Proportion of environmentally suitable
area (estimated with ecological niche modeling)
within and outside of dispersal range for each sea
krait species, determined with cost analysis.

Figure 2. Proportion of environmental suitability
classes (based on ecological niche modeling) for each
sea krait species in regions outside of dispersal range,
estimated with cost analysis.

Figure 3. Proportion of environmental suitability
classes (based on ecological niche modeling) for each
sea krait species in areas inside of dispersal range,
estimated with cost analysis.
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the accessible area (Figure 4). For widely dis-

tributed species, most of the suitable pixels in

the accessible area were in the terrestrial

domain. Furthermore, within the area accessible

to L. semifasciata, the proportion of suitable

pixels in the terrestrial domain was larger than

the proportion of suitable pixels predicted in

both domains, compared with the whole study

region (Figures 2, 3, and 4).

The distribution patterns of each species’

accessible area generally followed the coasts

of the archipelagoes and nearby continents

(Figure 5). In the case of Laticauda frontalis

and L. saintgironsi, their accessible area was

limited to the islands where they are known to

occur (Figure 5). Extensive suitable areas were

predicted for L. frontalis; however, these areas

were not included in the accessible area, sug-

gesting that this species may also be limited by

its dispersal capabilities (Figures 4 and 5). How-

ever, most of the potential distribution for

L. colubrina and L. saintgironsi was included

within the accessible area (Figures 4 and 5), so

we can assume that these species had already

colonized most of their suitable areas.

IV Discussion

Understanding species’ distributions still repre-

sents a challenging endeavor in biogeographical

research. Starting with Wallace’s division of

zoogeographical regions (Huxley, 1868; Mayr,

1944; Whitmore, 1982) right up to the present

day, biogeographers have tried to unlock the

code behind species’ distributions at large

scales using various tools, from simple obser-

vations of species and creating distribution

maps (Elfes et al., 2013; Sillero et al., 2014),

to generating species’ distribution estimates by

quantifying associations between species’

occurrences and corresponding environmental

conditions (Peterson et al., 2011). ENM has

been used extensively in the past decade to

estimate species’ potential distributions

(Mueller et al., 2013). However, as a relatively

young field of study, ENM methods have some

limitations, among them the selection of a

Figure 4. Overview of potential distributions of sea kraits (based on ecological niche modeling) in relation
to species specific dispersal range, estimated with cost analysis. The percentages represent the proportion
of pixels (from entire potential distribution) for each suitability class that overlaps with the dispersal range
for each species.
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study area extent for model training and the

assumption that the entire study area is acces-

sible to the species. In a recent article, Sahlean

et al. (2014) showed that in the context of cli-

mate change, the Caspian whip snake will not

be able to disperse across the study area within

70 years, a time span corresponding to the cli-

mate change scenarios. Therefore, even if new

areas become suitable under future climate

scenarios, some species may probably be

unable to disperse to these areas (Sahlean

et al., 2014). A similar problem exists for

studies focusing on current distribution pre-

dictions in cases in which the area includes

regions that cannot be reached by the organ-

ism due to dispersal limitations. In our study,

Figure 5. The estimated dispersal range (with cost analysis) and the potential distribution of each sea krait
species (based on ecological niche modeling). Dispersal range is shown in yellow; outside of dispersal range is
green; suitability in terrestrial domain is black; suitability in marine domain is blue; and suitability in both
marine and terrestrial domains is red.
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we address this problem by proposing the use

of a cost distance function to predict species’

dispersal across the study area.

1 Species’ distribution predictions
in the context of dispersal

Of the study area we considered, only a small

proportion (<26%) was estimated to be accessi-

ble to sea kraits (Figure 1). Moreover, for sev-

eral species, less than 1% of the study region

was accessible (Figure 1). Interestingly, the

region outside of the area accessible to sea kraits

was mostly predicted unsuitable, with only

0.16% of the pixels predicted suitable (Figure 2).

For some species (L. saintgironsi and L. colu-

brina), up to 96% of the pixels predicted as

suitable across the study region are accessible

to the species (Figure 4). These results show

that, overall, sea kraits seem to occupy most

of their suitable available niche and that they

may be unable to colonize much of the area

outside of their dispersal ranges. Therefore,

using dispersal estimates to refine species’ dis-

tribution predictions is a useful tool not only for

refining the area of focus when ENM results are

interpreted, but also for evaluating whether the

studied species occupy the entire available suit-

able niche, or if they are limited by their disper-

sal capabilities.

2 Cost distance models in ENM studies

Cost distance models are widely available in

both open-source (e.g. GRASS, Quantum GIS,

R package “gdistance”) (Neteler et al., 2012;

Quantum GIS Development Team, 2012; Van

Etten, 2012) and proprietary software (e.g.

ESRI ArcGIS) (ESRI, 2011). Therefore, cost

distance analysis, or other distance-based meth-

ods to estimate species’ dispersal, can be done

in a variety of software environments, depend-

ing on the researcher’s previous experience and

software availability. Because the analysis itself

uses a cost raster, which characterizes the

landscape/seascape features that might influ-

ence species’ dispersal (Beier et al., 2009), fac-

tors that may not be used or are irrelevant from

an ENM perspective can be incorporated. Gen-

erally, but depending on the question, cost ras-

ters integrate features that might affect species’

dispersal, such as land cover or different types

of barriers (lakes, rivers, or mountains) (see

Beier et al., 2009; Urban and Keitt, 2001; Urban

et al., 2009; for some examples, see Richard and

Armstrong, 2010; Sahlean et al., 2014; Sawyer

et al., 2011), as well as other data types that are

freely available online (for a short review, see

Sillero and Tarroso, 2010). An important lim-

itation of cost distance models is that the cost

raster is produced by ranking the dispersal

resistance of the landscape/seascape features

based on expert opinion (Beier et al., 2009;

Richard and Armstrong, 2010). However, cost

distance function is robust to potential land-

scape weighting errors and variables (Beier

et al., 2009). Here, we used sea kraits, and we

estimated dispersal over the ocean; however,

our approach can be used for species that dis-

perse over land. The application of this method

to ENM research has great potential for esti-

mating and visualizing the accessible area

within the study region for both marine and

terrestrial organisms.

3 Assessing commission error using
estimates of accessible areas

The potential distributions obtained with ENM

are subject to two types of errors: commission

and omission (for details, see Anderson et al.,

2003). Omission error is a type 2 statistical

error, in which species’ known occurrence data

are predicted as absent by the ENM estimates

(Anderson et al., 2003). Omission error is usu-

ally easy to calculate because species’ presence

data can be set aside from training the models

and used to test them (Peterson et al., 2011). On

the other hand, commission error is a type 1

statistical error, in which known absences are

8 Progress in Physical Geography XX(X)



incorrectly predicted as present by the ENM

(Anderson et al., 2003). Commission error is

more difficult to estimate because: (a) it is

challenging to determine whether an absence

point is a “true absence” (Anderson et al.,

2003); and (b) current ENM methods have

been addressing the first problem and do not

use “true absence” data when training the mod-

els (Peterson et al., 2011). Generally, it is

accepted that commission error is less of a

problem when the objective is to estimate the

species’ potential distributions (Peterson et al.,

2011). However, in some applications of ENM,

commission error (represented by overpredic-

tion) has been a source of concern, especially

when the models are transferred across space

(to other geographical regions) or projected in

time (under past or future conditions) (Peterson

et al., 2011; Williams and Jackson, 2007).

Areas predicted as suitable outside of the spe-

cies’ dispersal ability also represent model

overprediction. Hence, we can assume that by

estimating species’ dispersal via cost analysis,

the model overprediction due to dispersal lim-

itations can be taken into account. In the case

of our models for sea krait species, the over-

prediction accounted for less than 1%, because

less than 1% of the region outside the accessi-

ble area was predicted suitable in both marine

and terrestrial domains (Figure 2).

This simple method of estimating species’

dispersal can also help evaluate the ability of

the models to predict the species’ distributions

in areas that are not accessible to the species

and, hence, the potential commission error rep-

resented by overprediction. Moreover, it can be

used for any species, in both marine and terres-

trial environments.
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Appendix 1

Weighted variables used to generate
the cost raster

Presence/absence of corals: presence ¼ 1,

absence ¼ 80

Presence/absence of mangroves: presence ¼ 1,

absence ¼ 50

Water depth: 0–20 m ¼ 1, 21–50 m ¼ 20,

51–100 m ¼ 50, >101 m ¼ 100

Distance from the shoreline: 0–50 km ¼ 1,

51–100 km ¼ 5, 101–150 km ¼ 30,

>150 km ¼ 60

The weights and the variables were chosen

based on literature (Brischoux et al., 2009;

Brischoux et al., 2013; Heatwole, 1999; Heat-

wole et al., 2005) and expert opinion (authors

FB and IG). The weighting was done on a scale

from 0 to 100, on which 100 was given to seas-

cape features known to inhibit sea krait mobility

(e.g. sea kraits do not venture under 100 m

below sea level), and 0 to seascape features

known to be favored by the sea kraits (e.g. coral

reefs).
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